Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros


Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 14(7): e0007871, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628669

RESUMO

Leprosy, caused by Mycobacterium leprae, has plagued humanity for thousands of years and continues to cause morbidity, disability and stigmatization in two to three million people today. Although effective treatment is available, the disease incidence has remained approximately constant for decades so new approaches, such as vaccine or new drugs, are urgently needed for control. Research is however hampered by the pathogen's obligate intracellular lifestyle and the fact that it has never been grown in vitro. Consequently, despite the availability of its complete genome sequence, fundamental questions regarding the biology of the pathogen, such as its metabolism, remain largely unexplored. In order to explore the metabolism of the leprosy bacillus with a long-term aim of developing a medium to grow the pathogen in vitro, we reconstructed an in silico genome scale metabolic model of the bacillus, GSMN-ML. The model was used to explore the growth and biomass production capabilities of the pathogen with a range of nutrient sources, such as amino acids, glucose, glycerol and metabolic intermediates. We also used the model to analyze RNA-seq data from M. leprae grown in mouse foot pads, and performed Differential Producibility Analysis to identify metabolic pathways that appear to be active during intracellular growth of the pathogen, which included pathways for central carbon metabolism, co-factor, lipids, amino acids, nucleotides and cell wall synthesis. The GSMN-ML model is thereby a useful in silico tool that can be used to explore the metabolism of the leprosy bacillus, analyze functional genomic experimental data, generate predictions of nutrients required for growth of the bacillus in vitro and identify novel drug targets.


Assuntos
Genoma Bacteriano , Hanseníase/microbiologia , Redes e Vias Metabólicas , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Animais , Humanos , Camundongos , Camundongos Nus , Mycobacterium leprae/crescimento & desenvolvimento
2.
PLoS One ; 13(12): e0209495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30586394

RESUMO

Relatively little is known of leprosy in Medieval Ireland; as an island located at the far west of Europe it has the potential to provide interesting insights in relation to the historical epidemiology of the disease. To this end the study focuses on five cases of probable leprosy identified in human skeletal remains excavated from inhumation burials. Three of the individuals derived from the cemetery of St Michael Le Pole, Golden Lane, Dublin, while single examples were also identified from Ardreigh, Co. Kildare, and St Patrick's Church, Armoy, Co. Antrim. The individuals were radiocarbon dated and examined biomolecularly for evidence of either of the causative pathogens, M. leprae or M. lepromatosis. Oxygen and strontium isotopes were measured in tooth enamel and rib samples to determine where the individuals had spent their formative years and to ascertain if they had undertaken any recent migrations. We detected M. leprae DNA in the three Golden Lane cases but not in the probable cases from either Ardreigh Co. Kildare or Armoy, Co. Antrim. M. lepromatosis was not detected in any of the burals. DNA preservation was sufficiently robust to allow genotyping of M. leprae strains in two of the Golden Lane burials, SkCXCV (12-13th century) and SkCCXXX (11-13th century). These strains were found to belong on different lineages of the M. leprae phylogenetic tree, namely branches 3 and 2 respectively. Whole genome sequencing was also attempted on these two isolates with a view to gaining further information but poor genome coverage precluded phylogenetic analysis. Data from the biomolecular study was combined with osteological, isotopic and radiocarbon dating to provide a comprehensive and multidisciplinary study of the Irish cases. Strontium and oxygen isotopic analysis indicate that two of the individuals from Golden Lane (SkCXLVIII (10-11th century) and SkCXCV) were of Scandinavian origin, while SkCCXXX may have spent his childhood in the north of Ireland or central Britain. We propose that the Vikings were responsible for introducing leprosy to Ireland. This work adds to our knowledge of the likely origins of leprosy in Medieval Ireland and will hopefully stimulate further research into the history and spread of this ancient disease across the world.


Assuntos
Restos Mortais/microbiologia , Hanseníase/história , Mycobacterium leprae/isolamento & purificação , Adulto , Arqueologia/métodos , Restos Mortais/anatomia & histologia , Osso e Ossos/química , Osso e Ossos/microbiologia , Sepultamento , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Feminino , Técnicas de Genotipagem , História Medieval , Humanos , Irlanda , Hanseníase/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/genética , Isótopos de Oxigênio/análise , Filogenia , Isótopos de Estrôncio/análise , Adulto Jovem
3.
BMC Genomics ; 15: 270, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24708363

RESUMO

BACKGROUND: Leprosy has afflicted humankind throughout history leaving evidence in both early texts and the archaeological record. In Britain, leprosy was widespread throughout the Middle Ages until its gradual and unexplained decline between the 14th and 16th centuries. The nature of this ancient endemic leprosy and its relationship to modern strains is only partly understood. Modern leprosy strains are currently divided into 5 phylogenetic groups, types 0 to 4, each with strong geographical links. Until recently, European strains, both ancient and modern, were thought to be exclusively type 3 strains. However, evidence for type 2 strains, a group normally associated with Central Asia and the Middle East, has recently been found in archaeological samples in Scandinavia and from two skeletons from the medieval leprosy hospital (or leprosarium) of St Mary Magdalen, near Winchester, England. RESULTS: Here we report the genotypic analysis and whole genome sequencing of two further ancient M. leprae genomes extracted from the remains of two individuals, Sk14 and Sk27, that were excavated from 10th-12th century burials at the leprosarium of St Mary Magdalen. DNA was extracted from the surfaces of bones showing osteological signs of leprosy. Known M. leprae polymorphisms were PCR amplified and Sanger sequenced, while draft genomes were generated by enriching for M. leprae DNA, and Illumina sequencing. SNP-typing and phylogenetic analysis of the draft genomes placed both of these ancient strains in the conserved type 2 group, with very few novel SNPs compared to other ancient or modern strains. CONCLUSIONS: The genomes of the two newly sequenced M. leprae strains group firmly with other type 2F strains. Moreover, the M. leprae strain most closely related to one of the strains, Sk14, in the worldwide phylogeny is a contemporaneous ancient St Magdalen skeleton, vividly illustrating the epidemic and clonal nature of leprosy at this site. The prevalence of these type 2 strains indicates that type 2F strains, in contrast to later European and associated North American type 3 isolates, may have been the co-dominant or even the predominant genotype at this location during the 11th century.


Assuntos
Genoma Bacteriano , Hanseníase/microbiologia , Mycobacterium leprae/genética , Arqueologia , Osso e Ossos/microbiologia , Epidemias , Evolução Molecular , Genótipo , História do Século XV , História do Século XVI , História Medieval , Humanos , Hanseníase/epidemiologia , Hanseníase/história , Mycobacterium leprae/classificação , Mycobacterium leprae/isolamento & purificação , Osteologia , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Esqueleto , Reino Unido/epidemiologia
4.
Science ; 341(6142): 179-83, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23765279

RESUMO

Leprosy was endemic in Europe until the Middle Ages. Using DNA array capture, we have obtained genome sequences of Mycobacterium leprae from skeletons of five medieval leprosy cases from the United Kingdom, Sweden, and Denmark. In one case, the DNA was so well preserved that full de novo assembly of the ancient bacterial genome could be achieved through shotgun sequencing alone. The ancient M. leprae sequences were compared with those of 11 modern strains, representing diverse genotypes and geographic origins. The comparisons revealed remarkable genomic conservation during the past 1000 years, a European origin for leprosy in the Americas, and the presence of an M. leprae genotype in medieval Europe now commonly associated with the Middle East. The exceptional preservation of M. leprae biomarkers, both DNA and mycolic acids, in ancient skeletons has major implications for palaeomicrobiology and human pathogen evolution.


Assuntos
Evolução Molecular , Genoma Bacteriano/genética , Hanseníase/microbiologia , Mycobacterium leprae/classificação , Mycobacterium leprae/genética , Osso e Ossos/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Dinamarca , Doenças Endêmicas/história , História Medieval , Humanos , Hanseníase/epidemiologia , Hanseníase/história , Mycobacterium leprae/isolamento & purificação , Ácidos Micólicos/química , Filogenia , Suécia , Dente/microbiologia , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA